
© 2022 NTT DATA Corporation

Success Stories

MLOps Framework
Implementation

 CLIENT CHALLENGE

The Italian Renewable Energy Company was seeking
an MLOps System implementation to manage their
existing algorithms. In order to do this, it was
necessary to design an operational workflow that
helps data scientists and data engineers in the
development, deployment, and monitoring of ML
models. The MLOps System had to fit within the
client’ s existing architecture and technologies.

These included Azure Kubernetes cluster and
RabbitMQ as messaging bus. The System also had
to be flexible enough to be integrated into any
potential future Data Platforms, as well as to be
cloud agnostic in case migration to the cloud
becomes necessary in the future.

 SOLUTION OVERVIEW

The following components were part of the solution:
• Training: Centralization and standardization of the
training process for any existing and future ML
model in a single microservice.
• Monitoring: Comparison of model performance on
new data in the production environment.
• Model registry: Blob storage on the Kubernetes
cluster where binary files of ML models are stored.
Models are versioned and kept for reproducibility
purposes.
• Code Refactoring of existing microservices was
performed to adapt them to the new MLOps system
by implementing custom Python packages.
• Deployment: The client's current architecture was
used to deploy the MLOps System on Azure.

 BUSINESS VALUE & KP

The MLOps System Implementation helped the
client:
• Improve their management of ML models and
Data Science pipelines.
• Automate its workflow.
• Reduce time to market, and data scientists' effort,
who can now focus on testing and developing new
models.
• Easily transit to different cloud providers or data
platforms in the future thanks to the delivery
model's modular design, which makes it possible to
easily replace the underlying technologies.

 TECHNOLOGIES LEVERAGED

-Seldon -Kubernetes -DVC
-Azure blob -Python

Client
Italian Renewable
Energy Company

Industry
Energy

AI & ML ServicesCountry
Italy

 HISTORY OF TRANSFORMATION

The project originated from a long-standing
relationship with the client. Over the course of more
than two years, NTTDATA assisted the customer in
building several machine learning algorithms linked
to the energy industry that were deployed as
microservices. Implementing an MLOps System to
manage these algorithms was the logical extension
of this relationship.

Moreover, the System proposed new open-source
technologies that made it possible to:
• Centralize model artifacts, metrics, and metadata
in a single location, allowing all team members to
track and access the results of each experiment.
• Meet the flexibility requirement, as they can be
replaced by any cloud-native storage in the future.

Delivery Model
The client's current architecture was used to deploy
the MLOps System on Azure. The client's
architecture was not adversely affected throughout
implementation, which reduced costs and effort.
Development and deployment followed standard
CI/CD practices used by the client through Azure
DevOps.

Gets data-version and
model-name
Performs monitoring
Communicates if model
needs retraining

Retrieves and loads
production model

Logs experiments hyperparameters,
metrics and details on dataset. Stores
trained model with corrrect tag

Gets data-version and
model-name
Performs training
Communicates training
outcome

 BUSINESS VALUE & KP

The MLOps System Implementation helped the
client:
• Improve their management of ML models and
Data Science pipelines.
• Automate its workflow.
• Reduce time to market, and data scientists' effort,
who can now focus on testing and developing new
models.
• Easily transit to different cloud providers or data
platforms in the future thanks to the delivery
model's modular design, which makes it possible to
easily replace the underlying technologies.

 TECHNICAL SPECIFICATIONS

The solution provided by NTTDATA consisted in
implementing an MLOps System to manage the
client's existing algorithms, which were deployed as
microservices in an Azure Kubernetes cluster.

The following components were included in the
solution:
 1- Training: This component centralizes and
standardizes the training process of any existing
and future ML model in a single microservice, and
stores model artifacts and performance metrics in
the model registry, along with additional metadata.
2- Monitoring: This component allows the
comparison of model performance on new data in
the production environment and triggers new
training if monitoring thresholds are exceeded.
3- Model registry: Blob storage on the Kubernetes
cluster where binary files of ML models are stored,
with metadata about the training time and
parameters set. Models are versioned and kept for
reproducibility purposes.

Toyosu Center Bldg., 3-3, Toyosu 3-chome, Koto-ku, Tokyo 135-6033, Japan
Tel: +81 3 5546 8051 Fax: +81 3 5546 2405
www.nttdata.com/jp/

NTT DATA Corporation

Moreover, the System proposed new open-source
technologies that made it possible to:
• Centralize model artifacts, metrics, and metadata
in a single location, allowing all team members to
track and access the results of each experiment.
• Meet the flexibility requirement, as they can be
replaced by any cloud-native storage in the future.

“The project grew over time thanks to NTT DATA's collaboration and technical expertise, which allowed us to build
an excellent relationship of trust. We, therefore, expanded our business goals and asked the provider to deliver also
a state-of-the-art MLOps system to finalize the work already done by their data scientists. We are very satisfied with
the results obtained, which have enabled us to bring innovation to our company through efficient management of
the entire machine learning lifecycle.” - CLIENT

4- Code Refactoring of existing microservices was
performed to adapt them to the new MLOps system.
Code replication was minimized by implementing
custom Python packages through Azure Artifacts
that could be used by all microservices.

Kuberntes cluster

Existing Architecture

Implementation

Implemented in a modular way, it can be
replaced with eventual data platform registry.

Data Scientist may run the scheduler
through Rabbit if needed.

API db interfece:
Monitoring & training data

DB

Prediction

Monitoring

Training

Model
Registry

Dataset

Rabbit
messagging
bus

Rabbit

MS Prediction MS Scheduler MS Monitoring MS Training

PostgreSQL:
metadata

MinIO: Model
artifacts (pickle)

