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1. INTRODUCTION  

Genome assembly is the process of piecing together the long and complex molecular sequences 

that make up an organism's genome. This process involves aligning and merging the overlapping 

fragments of DNA or RNA sequences that are generated during sequencing, in order to 

reconstruct the full genomic sequence. 

This is particularly valuable in the fields of genomics, molecular biology, and personalized 

medicine. By obtaining a complete genome, researchers can identify and analyse genes 

responsible for disease or traits, develop new treatments and therapies, and better understand 

the interactions between genetic and environmental factors. Additionally, genome assembly can 

accelerate drug discovery by providing a complete roadmap of an organism's genetic material, 

which can help researchers identify potential drug targets more efficiently. Overall, genome 

assembly is a critical tool for advancing knowledge and innovation in the Life Sciences and Health 

sectors.  

Quantum computing has the potential to accelerate genome assembly by providing new 

algorithms and computational methods that can operate on large datasets with greater speed 

and efficiency. Traditional computing methods rely on brute force algorithms to solve complex 

mathematical problems, which can be computationally expensive and time-consuming. In 

contrast, quantum computers can perform complex calculations much faster and more 

efficiently, helping researchers to process larger amounts of genomic data in less time. 

Quantum computing can also support genome assembly by enabling researchers to explore 

novel approaches to genetic sequencing and analysis. For example, quantum algorithms could 

be used to analyse the unique patterns and characteristics of genetic data, allowing researchers 

to identify specific genes or genetic variations with greater precision and accuracy. 

Overall, quantum computing has experienced a significant boom in the last decade, which has 

enabled to address problems that were previously impossible to solve in the classical paradigm. 

Thus, quantum computing holds great promise for advancing our understanding of genomics 

and revolutionizing the way we approach genetic research and analysis. As the technology 

continues to develop, we can expect to see even more innovative applications and solutions 

emerge in the field of bioinformatics. 

In this project, – Optimization of Genomic Sequencing using Quantum Computing – we aim to 

explore the capability and feasibility of using Quantum Computing for genome assembly by 

benchmarking quantum and non-quantum computation approaches while addressing a genomic 

assembly problem using the same simulated real-world inspired. 

The objectives we aimed to achieve included: 

1. Implement classical (non-quantum) algorithms as a baseline for reference. This 

approach has been based on classical solvers (like Gurobi). 

2. Implement a quantum computing algorithm for genome assembly, using quantum 

computing hardware and software to develop and implement a quantum algorithm 
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for genome assembly. Quantum approaches include D-Wave's superconducting 

quantum annealer and NTT's Coherent Ising Machine (CIM), photonic-based. 

3. Compare clasical and quantum approaches againts well established KPIs, namely 

agility, computational efficiency, accuracy and scalability. 

 

The problem is modeled in the framewok of Graph Theory and Combinatorial Optimization 

Theory [1], [2], where based on the overlaps between the genome fragments, the correct order 

of the fragments must be found. The classical approach involves the use of heuristics as well as 

exact algorithms to solve this problem. The quantum approach involves heuristic algorithms to 

expres the problem as a Combinatorial Optimizacion problem and solve it in quantum hardware, 

which takes advantage of the properties of quantum mechanics to perform the same task in a 

potentially more efficient manner. The superposition of states and entanglement between qubits 

are the basis of the development of quantum computing. 

This document summarizes the definition of the problem, the involved parties and roles, the 

activities carried out in the scope of the project, the dataset to assess the model, as well as the 

project outcomes, comparison of results and conclusions of each of the teams involved in the 

project. Last but not least, some assumptions of the model formulation, problems identified and 

lessons learned have also been included. 

 

2. INVOLVED PARTIES AND ROLES 

NTT DATA SPAIN is the main promoter of the project. NTT DATA SPAIN leads the global project 

and brings both the technical expertise in terms of quantum computing models development 

and the management expertise to ensure the milestones and objectives of the project are 

accomplished. NTT DATA includes teams belonging to the following teams and industries: 

▪ Life Sciences Industry: Life Sciences expertise and project managmenet and coordination 

▪ Health Industry: Health innovation expertise and project management and coordination  

▪ SUSI - Smart Innovation & Strategic Investments:  Quantum Computing experts with 

focus on D-Wave's superconducting quantum annealer approach.  

NTT DATA BRAZIL leads the classical approach. It develops a model based on classical computing 

with computational optimization tools for the resolution of the genome assembly. It also 

participates in the rest of the tasks providing the functional and technical experience to achieve 

the milestones and objectives of the project. 

NTT DATA Innovation Center (IC Quantum) leads the adaptation of the architecture of the 

quantum model provided by NTT DATA SPAIN to be run on NTT's Coherent Ising Machine (CIM). 

It also participates in the rest of the tasks providing the functional and technical experience to 

achieve the milestones and objectives of the project. 
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3. QUANTUM COMPUTING POTENTIAL. A LONG-TERM VISION 
3.1 Quantum computing in life sciences and health industries 

Quantum Computing has experienced a significant boom in the last decade, allowing to start 

addressing real world problems that were previously impossible or impractical to solve using 

classical algorithms. 

Quantum optimization algorithms are particularly relevant to the healthcare sector and may 

offer a competitive advantage when it comes to complex computing problems as well as those 

requiring high computational capacity. This is the case of Genomics, where there are currently 

genome optimization problems [3],[4],[5] (such as genome assembly) whose computational 

complexity is rapidly increasing, and the classical computing approaches encounter great 

difficulties when trying to solve them. Quantum computing in this field can lead to more accurate 

genome assemblies and faster diagnoses of genetic diseases. In healthcare, quantum computing 

can also be used for medical imaging and personalized medicine. Quantum algorithms could 

analyze large sets of medical images, allowing doctors to detect anomalies and diagnose 

diseases more quickly. Personalized medicine involves tailoring treatments to an individual's 

specific genetic makeup, and quantum computing can help analyze large datasets of genetic 

information to identify optimal treatments. Also, Health analytics could be faster and more 

accurate in the analysis of large-scale health data sets by using Quantum computing based 

technologies. For instance, it may speed up the analysis of electronic health Records (EHRs) and 

enable to health and care professionals with more accurate analysis while identifying patterns 

and trends in disease outbreaks and contribute to better informed decisions on – for instance – 

prescription optimization and effectiveness.  

In the scope of Life sciences, it has also been identified concrete impacts in which Quantum 

computing could make a difference. This is the case of Drug discovery: Quantum computing 

could be used to simulate the behavior of molecules and predict how they will interact with 

other molecules, which could accelerate the drug discovery process [6]. This could lead to the 

development of new treatments for diseases that are currently difficult to treat. Precision 

medicine [7] is also a discipline that could benefit from quantum computing, as it could be used 

to analyze large amounts of genomic and clinical data to develop personalized treatment plans 

for patients. This could improve the effectiveness of treatments and reduce the risk of adverse 

side effects. With regards Protein folding, Quantum computing has the potential to be used to 

simulate the folding of proteins, which is a critical process in understanding how proteins 

function and how they can be targeted by drugs [8],[9]. This could lead to the development of 

new treatments for diseases such as cancer and Alzheimer's. 

Overall, quantum computing has the potential to accelerate scientific discovery and improve our 

understanding of complex biological systems, leading to new treatments for diseases and better 

health outcomes for patients. It represents a revolutionary paradigm shift in the field of life 

sciences and offers researchers and practitioners unprecedented opportunities to accelerate 

scientific discovery, improve our understanding of complex biological systems and unlock the 

mysteries of biology and bioinformatics. As technology matures and investment in quantum 

research continues to accelerate, the potential of quantum computing to revolutionize 
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healthcare and drive medical innovation is truly limitless. While challenges remain, quantum 

computing will play a crucial role in shaping the future of healthcare and transforming the way 

we think about the fundamental workings of life itself. 

 

3.2 Vision of the NTT DATA Quantum Innovation Center 

The Innovation Center focuses on advanced technologies of emerging domains, which are 

expected to become mainstream within the next five to ten years, aiming to establish world-

leading research and development team. It is the bridge to transfer technologies from the 

research sector to the commercial one and to support our position as first mover on the market. 

Our mission is threefold: 

1. We believe Quantum Computing is a long-term effort. 

2. To support our customers in this long-term endeavor, we develop from system integrator 

to innovation partner. 

3. We aim to become a Quantum System Integrator, providing the capabilities to develop, 

integrate, operate, sustain, and scale Quantum Computing and Quantum Inspired end-

2-end solutions to our customers. 

To this end, our consulting strategy stands on the followings four pillars: 

❖ First, find your fit. 

Quantum computing will not be for everyone. But if your business is in a data-intensive industry 

or a sector where simulations of complex and dynamic real-world scenarios are relevant, we 

recommend that you start to engage with this advanced technology. A good first step is to launch 

an initiative to build an understanding of quantum algorithms and gain experience using the 

existing quantum (and quantum-inspired) platforms and tools. But if the transformative value of 

quantum computing is at least five to ten years away, why should we consider investing now? 

❖ Steep learning curve. 

First, this is a radical technology that presents daunting acceleration challenges. Both quantum 

programming and the quantum technology stack bear little resemblance to their classic 

counterparts (although the two work together closely). Early adopters achieving expertise, 

visibility into knowledge and technological gaps, and even intellectual property, will be put at a 

structural advantage as quantum computing gains commercial traction. 

❖ Expect sudden breakthroughs. 

More importantly, progress towards maturity in quantum computing is not expected to follow a 

smooth, continuous curve. Rather, quantum computing is a candidate for a sharp turnaround 

that can come at any time. Companies that have invested to integrate quantum computing into 

their workflow are far more likely to be able to capitalize quickly, and the gaps they open will be 

difficult for others to close. This will offer a substantial advantage in industries where classically 

intractable computational problems lead to bottlenecks and lack of revenue opportunities. 

❖ Many alternative approaches. 
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Finally, although today's quantum race focuses on the realization of Universal Quantum 

Computers as theorized by Feynman and Deutsch in the 1980s, alternative approaches to 

quantum and non-Von Neumann techniques are already available on the market. They are not 

general purpose, but they prove effective in solving a wide range of usually intractable 

combinatorial optimization tasks. Also, development of "quantum-inspired" algorithms is gaining 

traction, in turn leading to the realization of new digital (i.e., classical) hardware architectures 

capable to get the best from them. 

 

4. PROJECT DESCRIPTION 
4.1 Relevance of the genome assembly problem. 

A genome contains all the genetic information that makes an organism unique. Assembling the 

genome from the fragments or reads produced by sequencing techniques allows us to study this 

information in detail. 

One major application of genome assembly is in the field of medical research. By sequencing and 

assembling the genomes of individuals, scientists can identify genetic variations that may be 

associated with certain diseases or conditions. This information can then be used to develop new 

treatments or therapies that target the underlying genetic causes of disease. 

Genome assembly also plays a crucial role in fields such as evolutionary biology and ecology. By 

comparing the genomes of different species, researchers can learn about the evolutionary 

relationships between them and gain insights into how different organisms have adapted to their 

environments. 

Genome assembly also has important applications in the fields of biotechnology and synthetic 
biology. This is especially relevant in the field of metagenomics, where assembling genomes for 
comparison can bring insight into the gene function of specific organisms that could have 
biotechnological applications. By accurately sequencing and assembling the genomes of 
organisms, scientists can better understand the genetic basis of traits and use this knowledge to 
develop new products or technologies. For example, genetic engineering techniques can be used 
to modify the genetic code of an organism, allowing researchers to create new strains with 
desirable characteristics, such as increased resistance to disease or improved yield of a particular 
product. Moreover, genome assembly can help design synthetic genomes of organisms such as 
bacteria that are able to produce biofuels, drugs or other bioproducts. 

Overall, genome assembly is a critical tool for advancing our understanding of genetics and 

biology, and it has important implications for fields ranging from medicine to agriculture. 

 

4.2 The problem that this Project aims to solve. 

This Project on Quantum Genome Assembly aims to address one of the biggest challenges in 

genomics today: the computer-assisted assembly of fragmented genomic sequences, the so-

called reads. Current sequencing technologies produce reads that are fragments of the genome. 

These reads are usually quite short (100-200 bp) which hinders their assembly. Some recent 

sequencers can produce longer reads (10k bp), but they tend to contain more sequencing errors. 
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Since it is impossible to distinguish an error from a real nucleotide, a great amount of data 

(coverage) is needed. This entails that assembly algorithms need to deal with a high number of 

reads to assembly a genome which usually takes a lot of time.  

Currently with classical computing the existing limitations are: 

• Computational difficulties for the assembly of large genomes. 

• Low computational speed to meet a growing demand of sequencings, due to 

biotechnological advances. 

In genome sequencing, quantum computing can improve the accuracy and speed of genome 

analysis, even for computationally demanding genomes. 

 

4.3 Strategy and potential solutions 

The ‘de novo’ Genome Assembly is a technique for reconstructing the genome of an organism 

without a reference genome. As we mentioned, starting from the fragmented genome 

sequences called reads, the problem consists of finding the path that connects all the reads in 

the correct order and reconstructs the genome. 

The genome assembly problem can be formulated as a combinatorial optimization problem in a 

graph, where the nodes represent the reads, and the connections between pairs of nodes 

depend on the mutual overlaps between the reads. 

There are multiple ways to solve such optimization problem. In this specific case, we will be 

basing our approach on the Traveling Salesperson Problem (TSP), where the minimum total 

distance path that connects all the nodes, subject to some constraints, provides the correct 

ordering of the reads, thus allowing to assemble the original genome. 
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5. ACTIVITIES OF THE PROJECT 

The set of tasks planned for the development of the Project are shown in the figure below: 

 

Figure 1. Project plan and activities. 

 

5.1 Documentation and bibliography.  

[3], [4], [5] 

5.2 Problem definition. 

This task consists of defining mathematically the combinatorial optimization problem of genome 

assembly, as a problem equivalent to the Traveling Salesperson Problem (TSP) and formulating 

it in such a way that it can be solved using quantum computing. 

In genome assembly, the task is to reconstruct the original genome sequence by identifying 

overlapping regions in reads such as those shown below. 

 

Figure 2. Example genome sequence. Reads of length 16 base-pairs. 
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The TSP can be modelled as a graph with nodes and edges connecting the nodes. To represent 

the genomic data in a graph, we create a directed weighted graph in which the nodes represent 

the reads, and the directed edges represent the overlap between them. This approach allows us 

to use graph-based algorithms to solve the assembly problem. 

 

Figure 3. Directed Graph encoding the overlaps between the pairs of reads. 

The overlap between two reads, i and j, which we assume are of equal length, is calculated as 

the number of prefix base pairs from the second read that match exactly the suffix from the first 

read, as can be seen in the following image.  

 

Figure 4. The example genome sequence reads, arranged to show their mutual overlaps. 

We leave for future work to study variations of this and other measures, that for example allow 

some mismatches. 

The distance between two reads can be calculated as the total length of a read minus the degree 

of overlap between them. That is, the greater the overlap, the smaller the distance and the closer 

the reads will be. 
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To solve the problem of genome assembly, the graph must be converted into a QUBO (Quadratic 

Unconstrained Binary Optimization) matrix, which is a mathematical representation of the 

problem that can be solved by a quantum annealer. 

To get the QUBO we need to write the cost function that should be minimized (1) and the 

constraints that the solutions are subject to (2), (3). These are in essence the same as in the TSP.  

• Cost function (1). Minimize the sum of weights (distances) along the path. 

 

• Constraint (2). Each node is included in the path once and only once. 

 

• Constraint (3). Each step in the path contains one and only one node. 

 

Once the QUBO is defined, the expression to minimize is given by: 

 
 

Where Q is the QUBO matrix and x are the binary variables which optimize the problem. 

The goal is to find an assignment of binary variables (x) that minimizes the energy of the QUBO 

matrix, which corresponds to finding the optimal ordering of the sequence of reads. Something 

similar to the following image has been obtained, where the solution gives the order in which 

the nodes are connected to obtain the genome assembly. 
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Figure 5. An optimal path in the Directed Graph that depicts correct order of the reads. 

To finally, get the genome assembly by placing all the reads in the order indicated by the solution, 

i.e. by the optimal path, and taking into account that the overlaps between consecutive reads 

must be respected. 

 

 

Figure 6. The genome assembled, with the reads arranged in the correct order, according to their overlaps. 

 

5.3 Quantum model design and implementation. 

In this step, a quantum model for genome assembly is designed and implemented, taking into 

account available quantum tools, such as D-Wave. 

D-Wave is a company that has been building and improving a kind of quantum computer called 

a quantum annealer using superconducting qubits technology. A quantum annealer is especially 

well suited to solve combinatorial optimization problems expressed in terms of QUBO problems. 

This company also provides APIs, software libraries and tools to interface with their pure 

quantum and hybrid quantum-classical computers. 

In addition to modeling the problem, synthetic data is generated to build assembly problems and 

test the correctness of the quantum model developed, running small-scale problems of the 

genome assembly. 

 

5.4 Coherent Ising machine design and implementation. 

Quantum annealers internally map the QUBO problem into an Ising problem, where the function 

to minimize is the Ising Hamiltonian and the variables represent spins that can be in one of two 

states (up or down), represented by the values +1 and –1. 
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Networks of degenerate optical parametric oscillators (DOPO’s) are an alternative physical 

system for solving the Ising problem. These are what Coherent Ising Machines (CIM) use, in this 

case the up-spin and the down-spin are represented by the positive and negative in-phase 

amplitudes (0 or π). 

A CIM solves the Ising problem basing on the minimum-gain principle: if the optical couplings 

between the DOPO’s are adjusted to implement 𝐽𝑖𝑗, the DOPO network oscillates in the phase 

configuration with the lowest loss, which corresponds to the ground state of the Ising 

Hamiltonian. This way the CIM can provide a fully connected graph which traditional quantum 

annealers cannot provide. 

Because of the CIM intrinsic complexity, it can be difficult to access to such technology. A possible 

way to overcome this limitation can be the so-called CyberCIM. CyberCIM is an early prototype 

of a CIM simulation performed in conventional processors. 

Chaotic Amplitude Control (CAC) is an algorithm that simulate CIM through a mean-field 

dynamics with the addition of a control of the amplitude via error-correction terms that evolves 

chaotically. The algorithm was implemented using a suite for numerically solving differential 

equations written in Julia. 

 

5.5 Identify and assess potential quantum advantages. Data generation.  

Once the capacity and parameters that regulate the model are defined, a database is generated 

with different scenarios that cover several ranges of parameters that control the model. 

The database we have generated comes from a sequencer simulator that we created to obtain 

reads from a long genome that our algorithm can solve.  

Currently, in most real sequencers, many reads are generated to ensure a complete coverage of 

the genome, with short length reads predominating. However, for our approach, this supposed 

a problem since the size of the problem (number of variables) scales with N2, where N is the 

number of nodes, i.e., of reads. N2 variables scale very quickly, and this is an issue for the 

quantum computers that are available at the moment. To address this issue, we have generated 

our own simulated data. This way we can choose the number of reads and their length, making 

it easier to control the capacity of our algorithm and achieve accurate results. 

To generate the sequences for our study, we started with the genome of the bacteriophage 

phiX174, which has 5386 base pairs [6]. We introduced several tunable parameters to create our 

dataset. Table 1 shows the data scenarios generated with the following parameters.  

• First, the total genome length (Length), as mentioned above is bacteriophage phiX174. 
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• Second, we varied the number of reads or nodes (Num. Reads), ranging from 5 to 30 at 

5-nodes intervals. 

• We also adjusted the length of the reads (Reads length) to match the number of nodes 

needed to ensure that they overlapped enough to cover most of the genome (for 

convenience only; this has no effect on our approaches). It should be noted that in all 

cases we have covered the entire genome, length covered = 5386. 

• We tested different ranges of overlaps between the reads, including low, medium and 

high overlap, for all node cases. The table shows the range of overlaps in percentage 

between the minimum (Min.Overlap %) and maximum (Max.Overlap %). 

• Finally, the optimal energy refers to the minimum amount of energy (or optimal value of 

the cost function) that should be obtained when solving the problem, as a reference. It 

corresponds to the expected best solution of the graph path to assemble the genome. 

Length Num. Reads Reads length Min. overlap % Max. overlap % Energy 

5386 05 1269 15 25 0.98337 

5386 10 0652 15 25 0.88667 

5386 15 0449 15 25 0.83911 

5386 20 0334 15 25 0.83576 

5386 25 0270 15 25 0.82185 

5386 30  0221 15 25 0.83263 

5386 05 1790 45 55 0.73258 

5386 10 0985 45 55 0.60081 

5386 15 0671 45 55 0.56929 

5386 20 0524 45 55 0.53868 

5386 25 0412 45 55 0.54270 

5386 30 0348 45 55 0.53237 

5386 05 2974 75 85 0.51956 

5386 10 1857 75 85 0.34968 

5386 15 1466 75 85 0.28122 

5386 20 1097 75 85 0.27021 

5386 25 0933 75 85 0.24966 

5386 30 0767 75 85 0.24937 

5386 05 1732 20 80 0.75004 

5386 10 0841 20 80 0.69980 

5386 15 0645 20 80 0.59285 

5386 20 0529 20 80 0.53510 

5386 25 0441 20 80 0.50884 

5386 30 0332 20 80 0.55919 

5386 05 1753 40 60 0.74578 

5386 10 0973 40 60 0.60817 

5386 15 0681 40 60 0.56154 

5386 20 0498 40 60 0.56606 

5386 25 0407 40 60 0.54932 

5386 30 0343 40 60 0.54014 

Table 1. Dataset generated.  
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By controlling these parameters, we can create a dataset that is tailored to our specific needs, 

allowing us to test the scalability and accuracy of our algorithm under different conditions. 

The degree of overlap induces a varying degree of complexity into the problem, added to the 

scale-induced complexity (increasing number of nodes or reads). The lower the overlaps, the 

more similar the modeled distances between pairs of reads are, and the more difficult it becomes 

to find an optimal shortest path that puts the reads in the correct order. 

We wanted to draw some scenarios that look realistic or achievable, and others that are less 

real-world cases, but represent an interesting challenge for our approaches. The meaning of each 

range of overlap is the following: 

• 15-25 %: Very small average overlaps, very concentrated around the mean. 

• 45-55 %: Moderate average overlaps, very concentrated around the mean. 

• 40-60 %: Moderate average overlaps, with some spread around the mean. 

• 20-80 %: Moderate average overlaps, with much more spread around the mean, with 

important fractions of very small and very high overlaps. 

• 75-85 %: Very big average overlaps, very concentrated around the mean. 

On one hand, the overlap ranges that induce more complexity a priori are the 15-25 and 20-80 

ranges. On the other hand, the most realistic overlap ranges according to current sequencing 

techniques and practices are the 45-55, 40-60 and 75-85 ranges, which are also a priori less 

complex. 

 

5.6 Analyze quantum performance in-depth. 

Once the model has been tested and the final version is available, we will proceed to solving the 

data scenarios mentioned above. The objective is to find an optimal solution for each one, that 

satisfies the imposed constraints. We will show these results later, while comparing the solutions 

obtained by the quantum approach using D-Wave with the classical approach and the quantum 

approach of the CIM. 

• Quantum Annealing approach with D-Wave. D-Wave has developed several solvers that 

can be applied in complex problems using quantum computing. We will run three 

solvers: Simulated Annealing Solver, the Hybrid Solver, and the Advantage6.1 Solver for 

each scenario. To understand their architecture and operation, we will explain now in 

some detail each of these solvers. 

- Simulated Annealing Solver. The Simulated Annealing Solver is an optimization 

algorithm that runs on classical hardware and seeks to find solutions to cost 

minimization problems. It is very similar to a hill-climbing algorithm to search for 

global optimal in a hypersurface defined by a cost function to be optimized. This is 

one of the algorithms that is used most when comparing performances of quantum 

and quantum-inspired approaches. 

The algorithm is in many aspects similar to the quantum annealing kind of search in 

the problem solutions space (but it is not a quantum annealing simulator). With the 
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difference that simulated annealing uses a temperature-like parameter that controls 

the ability to jump out of local-minima solutions found during the search, and 

eventually reach a global minimum (i.e., the optimal) solution. In actual quantum 

annealing devices, this is governed by the quantum tunneling effect that arises in 

physical systems at quantum scales. 

The algorithm starts with a random solution candidate and, at each iteration, 

generates a new solution candidate that may or may not be better than the previous 

one, choosing a criterion based on the difference between the cost function of the 

new solution and the cost function of the current solution, as well as that fictitious 

temperature, that decreases over time. 

The algorithm continues iterating until the fictitious temperature reaches a 

minimum value. At that moment the algorithm stops and returns the current 

solution as its best-found solution. 

In the case of D-Wave's Simulated Annealing solver implementation, the search is 

performed many times. This is called sampling, and it is common to run from 

hundreds to a few thousand samples (in our case we sample 1000 times, and in some 

cases, 5000 times). After completion, the top-n best solutions are normally retained. 

From them, unfeasible solutions are further filtered out. 

We run this solver on common hardware: a Windows-10 laptop with IntelCorei7-

1065G7 CPU at 1.30GHz and 12.0GB of RAM and using the default solver settings. 

- Advantage6.1 QPU solver. The Advantage Solver is a pure quantum solver that uses 

D-Wave's qubit processors (or QPUs) to solve optimization problems. These 

processors use an approach known as "quantum annealing" to search for the 

optimal solution. 

The D-Wave Advantage series of quantum computers (Advantage6.1 is their latest 

version) contains more than 5000 qubits and 15 couplers per qubit, or more than 

35000 couplers in total. The number of qubits determines the number of problem 

variables that can be mapped to the processor, and the number of couplers 

determines how many coefficients relating pairs of variables can be represented in 

the QPU. 

However, due to the limited connectivity provided by this number of couplers, it is 

often needed to combine several qubits into groups acting as single logical qubits to 

match the number of quadratic coefficients of the problem. This reduces the number 

of qubits available for variables and limits the size of the problems that can be solved 

directly in a single QPU. 

Quantum Annealing operates in these processors by applying time-dependent 

biases and couplings to the qubits, for a duration of about 1-200 microseconds (20 

microseconds is the default), resembling an annealing (or cooling) process, but 

quantum in nature. In the final stages, the quantum tunneling effect helps in 

escaping from local minima state solutions. At the end of this cycle the biases and 

coupling values correspond to the coefficients of the problem to be solved, and the 

values of the qubits encode the solution values for the variables of the problem. 

It is needed to run many samples or shots of a problem to collect sufficient statistics 

and ensure optimal or at least good-enough solutions are found. D-Wave enforces 

some limits on this number. In our case we sample 1000 times. 
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The connectivity of our problem at hand is very demanding: only problems with less 

than 10 nodes can be submitted to this QPU. Hence, we attempted to solve only the 

5-node scenarios. 

- Hybrid quantum-classical solver. The Hybrid Solver combines the power of classical 

and quantum computing to solve optimization problems. This approach allows us to 

solve many problems that do not fit on the current Advantage QPUs, due to their 

size (number of variables and coefficients). It can handle problems with thousands, 

up to a million, variables. 

This solver uses quantum-classical workflows: classical computing, to prepare an 

initial solution, and quantum computing, to refine and improve the solution. A time 

limit must be established or use a default value computed by the solver that depends 

on the problem size. 

The workflows combine a classical heuristic module that explores the solution space, 

and a quantum module which tries to solve parts of the problem in the QPU, guided 

by the heuristic module toward promising areas of the solution space or toward 

improved solutions. After the time limit, the best solution found by the heuristics is 

returned. 

In our case, we do not establish a time limit, and the solver establishes a value of 3 

seconds, for all the scenarios, even for the scenarios with 30 nodes. In one case we 

increased the time limit to 5 seconds, to allow the solver to reach the optimal 

solution that was not found using the default time limit. 

• Classical Solver approach with Gurobi. Gurobi is an optimizer that is state-of-the-art for 

solving mathematical programming problems. It is proved that the solver can provide 

optimal solutions for linear (LP), quadratic (QP), and mixed-integer (MIP) optimization 

problems. Due to its flexibility, it is possible to evaluate different approaches for the 

same problem with the same optimizer. To numerically solve linear programming 

problems, Gurobi uses the Simplex method, evaluating each iteration to see if all the 

constraints are satisfied and if the cost function is minimum, with a tolerance of 10-4. 

The solver configuration to resolve this problem was maintained as standard. Moreover, 

the analyses were performed in a Virtual Machine Linux 5.10.0-21-cloud-amd64 with 

346 GB of RAM and 32 CPUs. In order to mitigate some computational bias, each analysis 

was performed 1000 times, so that the elapsed time is the average of all these samples. 

• Quantum Inspired approach with Chaotic Amplitude Control. NTT Basic Research 

Laboratories and NTT Research jointly developed the Chaotic Amplitude Control 

Algorithm to easily evaluate the performance of the Coherent Ising Machine in practice. 
Chaotic Amplitude Control (CAC) algorithm takes the optical field amplitude variables to 

simulate the internal process of a CIM. The time evolution of these variables is described 

by a sum of the interaction terms with a double well potential pot and the white noise. 

The control of the amplitude is performed by introducing error-correction terms whose 

role is to correct the amplitude heterogeneity. These error signals modulate the coupling 

strength defining a deterministic dynamic that is inclined to visit spin configurations 

associated with lower Ising Hamiltonian without relying entirely on the descent of a 

potential function. 

The time evolution equation is then numerically integrated to find the new configuration 

and its correspondent energy. This process is done iteratively until some condition is 

met, for example until it reaches a maximum number of time steps. 
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The value of the target amplitude for which all local minima is unstable is not known a 

priori, so that is dynamically modulated depending on the visited configurations to 

destabilize the local minima traps. 

 

5.7 Classical model development and execution 

To compare the performance of the quantum model, classical models for genome assembly were 

evaluated. It is possible to solve the TSP with linear or non-linear approaches and uncoupled 

constraints from the cost function. The non-linear approach is defined in the Problem Definition 

section, where the cost function is defined in (1) and is subjected to the constraints (2) and (3). 

Nonetheless, in this study, the classical model developed was the linear approach due to its 

lower complexity and typically higher performance compared to the non-linear. This approach is 

based on the edges of the graph, not on the nodes as the non-linear formulation, so the cost 

function is written as  

min:   ∑ ∑ 𝑤𝑖,𝑗

𝑁−1

𝑗≠𝑖,𝑗=0

𝑁−1

𝑖=0

𝑟𝑖,𝑗 , 

where 𝑤𝑖,𝑗 is the distance between the reads i and j, N is the number of reads, and 𝑟𝑖,𝑗 is a binary 

value that is 1 if i is followed by j in the Hamiltonian path and 0 if it doesn’t. It is worth pointing 

that r is a N-by-N matrix, where the line i corresponds to the origin and j is the destiny for given 

path. 

The constraints for this problem must guarantee that, for each node, there is one edge going 

outside and one edge going inside. To do so, the first constraint is: 

∀𝑗 ∈ {0,… ,𝑁 − 1},   ∑ 𝑟𝑖,𝑗
𝑁−1
𝑗≠𝑖,𝑖=0 = 1 ,º  

assuring that, for each destiny node, there is only one origin node. The second constraint is: 

∀𝑖 ∈ {0,… ,𝑁 − 1},   ∑ 𝑟𝑖,𝑗

𝑁−1

𝑗≠𝑖,𝑗=0

= 1 , 

assuring that, for each origin node, there is only one destiny node.  

Nonetheless, with only these two constraints, it is possible to achieve a solution with more than 

one closed path. To eliminate this, a third constraint is added as: 

𝑢𝑖 − 𝑢𝑗 +𝑁𝑟𝑖,𝑗 ≤ 𝑁 − 1 ,  1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁 − 1 , 

where u is a dummy variable array of integer values between 0 and N-1 and size N-1.  
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6. PROJECT OUTCOME AND LESSONS LEARNT 

In this section we compare the results obtained with the different approaches used to solve the 

genome assembly problem. The solvers used were described above: Gurobi Linear solver, D-

Wave Simulated Annealing solver, D-Wave Hybrid solver, D-Wave Advantage6.1 QPU and Chaotic 

Amplitude Control quantum-inspired algorithm. 

Given a set of solutions obtained from the different solvers and approaches, there are several 

parameters and indicators than can be compared. For this PoC we focus on these two main 

aspects: 

- Firstly, the energy of the solutions, i.e., the minimum energy that we have been able 

to find with each of the solvers and for each problem scenario.  

- Secondly, the computing time required by each solver in each scenario. This 

parameter has some peculiarities that affect the comparison, and we will explain 

them later. 

We collected solutions for all nodes and overlaps that are covered in the 30 problem scenarios 

with all solvers. We classified the solutions depending on their energy and whether they meet 

the constraints of the problem:  

- Optimal solutions, which have an energy corresponding to the optimal energy for 

the specific problem scenario. 

- Feasible solutions, which do not reach the optimal energy, but satisfy all the 

constraints. 

- Unfeasible solutions, which do not meet some of the constraints, even though their 

energy could be lower than the optimal energy (we discard them for our analysis). 

Ability to find optimal or good-enough solutions. 

Reaching the optimal energy with at least one solution is important to prove that a certain 

approach can find the best possible solutions, given the constraints and parameters We 

computed the energy ratio between the solution energies with respect to the expected optimal 

energies, for each solver. For the feasible solutions, this shows how far they are from the optimal 

solutions. 
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Figure 7. Energy to optimal ratio as a function of number of nodes for overlap between 15-25%. 

 

 

Figure 8. Energy to optimal ratio as a function of number of nodes for overlap between 45-55%. 

 

 

Figure 9. Energy to optimal ratio as a function of number of nodes for overlap between 75-85%. 
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Figure 10. Energy to optimal ratio as a function of number of nodes for overlap between 20-80%. 

 

 

Figure 11. Energy to optimal ratio as a function of number of nodes for overlap between 40-60%. 

Figures 6,7,8,9 and 10 show how the D-Wave Hybrid solver and the Gurobi Linear solver have 

obtained optimal solutions for all the proposed scenarios with all the overlapping ranges.  

However, the D-Wave Advantage6.1 solver has only been able to obtain optimal solutions for the 

five-node cases, and only unfeasible solutions (therefore not shown in the figures) for the 10-

node cases. As explained before, the scenarios with more than 10 nodes exceed the limit of this 

type of QPU, given the number of variables needed and the connectivity required. We consider 

these cases as if with this solver, for the scenarios from 10 nodes upwards, only unfeasible 

solutions were obtained.  

The Simulated Annealing solver obtains optimal solutions for the scenarios of low number of 

nodes. But as the number of nodes increases (25, 30), we start to obtain feasible (not optimal) 

solutions in most cases. It should be noted that there are still some optimal solutions for high 

overlaps. Figures 7, 8 and 9 show how for 25 nodes there are optimal solutions, corresponding 

to high overlap, (45-55, 75-88, 20-80), respectively. For 30 nodes, analyzing all Figures above, no 
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longer finds an optimal solution, but a feasible one. That result indicates that it is easier for the 

Simulated Annealing solver to perform genome assembly when the overlaps between reads are 

higher. However, it cannot be concluded definitively since solutions for a greater number of 

nodes would have to be explored. 

Again, the scale and complexity of the problem comes into play, but unlike the D-Wave 

Advantage6.1 solver, the Simulated Annealing algorithm can find optimal solutions in scenarios 

with up to approximately 25 nodes.  

Looking now at the Chaotic Amplitude Control solver in all the above figures, it is able to find 

optimal solutions for all overlapping scenarios but only up to 10 nodes. Other solutions obtained 

for 20 nodes (see Figure 9 and 10), are non-optimal feasible solutions. It is worth noting that in 

Figure 7 for overlaps 45-55, it has been able to obtain an optimal solution for 15 nodes as well. 

Computing time and cost of finding solutions. 

Next, the execution times (Wall clock time) of each solver have been compared as a function of 

the number of nodes or reads. 

 

Figure 12. Wall clock time as a function of number of nodes for overlap between 15-25%. 

 

 

Figure 13. Wall clock time as a function of number of nodes for overlap between 45-55%. 
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Figure 14. Wall clock time as a function of number of nodes for overlap between 75-85%. 

 

 

Figure 15. Wall clock time as a function of number of nodes for overlap between 20-80%. 

 

 

Figure 16. Wall clock time as a function of number of nodes for overlap between 40-60%. 
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Analyzing the computing times, it can be observed from figures 11, 12, 13, 14, and 15 that the 

linear formulation generated with Gurobi is faster than the rest of the solvers. It should be noted 

that the classical approximation used here is not a quadratic formulation, which reduces the 

computational capacity and simplifies the problem. But it is a good indicator of what can be 

expected at most from the best of all worlds. 

It is also interesting to note that the D-Wave Hybrid solver maintains a constant trend as the 

number of nodes increases, whereas with Gurobi, the trend increases linearly with the number 

of nodes. This is a noteworthy result because it raises the question of what will happen when 

the number of nodes is increased beyond 30. It is yet to be studied whether this trend continues 

or if the Hybrid solver exceeds the computing time of the classical approach. 

On the other hand, the Simulated Annealing solver shows a trend of increasing times with the 

number of nodes very similar to the Gurobi Linear solver, except of course two orders of 

magnitude above it. The increase in duration times between the 5 node and the 30 node cases 

is by two orders of magnitude in the Simulated Annealing solver (and only 1 order of magnitude 

in the Gurobi Linear solver). Also, it varies depending on the degree of overlap. For example, in 

figures 11 and 14 for 5 nodes, the time is a few seconds. However, as the number of nodes 

increases and the time increases, 30 nodes are reached with a computing time that exceeds 100 

seconds. Comparing this range with figures 12, 13, and 15, it can be observed that for 5 nodes, 

the time is also a few seconds, but when 30 nodes are reached, the time does not exceed 100 

seconds. If the ranges of overlaps in which this occurs are observed, the computing time to find 

an optimal solution increases as the number of nodes increases for wide interval overlaps (20-

80) and low overlaps (15-25). In fact, while we requested 1000 shots or samples at each 

execution of the Simulated Annealing algorithm, that was not enough in the case of these more 

complex scenarios with these overlaps. Therefore, we had to increase the number of samples to 

5000 in order to obtain optimal or even just feasible solutions. This justifies the increase in wall 

clock time by a factor of about 5 in these cases. 

 

6.1 Quantum Annealing approach with D-Wave 

The computing times with Simulated Annealing and with the Advantage6.1 QPU depend on 

number of shots/samples requested. A wall clock time per sample can be computed, and it gives 

an idea of the cost of obtaining one single solution. But to guarantee that optimal or good 

enough solutions are obtained, a minimum number of shots should be run, which affects the 

computing time required. 

More specifically, since Simulated Annealing runs on CPU, it is affected by the exponential growth 

of the complexity of the problem when the number of nodes increases. This means that for 

bigger problems, a really powerful computer is needed. 

In the case of the Advantage6.1 QPU, the physical process of quantum annealing takes about 20 

microseconds. Extra time for preprocessing the problem job and postprocessing the solutions to 

be returned (processes that run on D-Wave devices in front of the QPU) add on top of that, up 
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to the milliseconds scale. And this should be multiplied by the number of shots, which is of the 

order of 1000. Overall, the time scale for a job with 1000 shots or samples is of the order of some 

seconds. But it will not experience the exponential growth. With this approach, solving a 

problem implies a rather constant time duration per shot (the duration of the annealing cycle) 

enlarged by the pre and post processing times. 

We obtained solutions with the Advantage6.1 QPU solver for the cases of 5 nodes only, with 

1000 samples per run. For 10 nodes we only obtained unfeasible solutions. To some degree, this 

was expected, due to the limited capacity to encode this kind of problem in the D-Wave’s QPUs, 

for the number of variables high connectivity required. An alternative, although not so common, 

mathematical formulation of the problem, like the one used in the Gurobi Linear approach, might 

help in reducing the number of variables. We leave this research for future work. 

With regard to the Hybrid solver, the time limit that rules this approach is the main restricting 

factor. In our scenarios we observed that the default value of 3 seconds is enough to get to the 

optimal solution, and it remains constant for all the scenarios. This value is the default 

established by the solver itself according to its own criteria depending on the problem size. 

Nevertheless, the measured times are about 2 seconds in average, and do not exceed this limit 

value (except for one case, with 3.7 seconds).  To explain this effect, either the limit time is 

consumed by several processes running in parallel, or the solver has a mechanism to judge 

whether it should stop searching and stops prematurely. We want to look deeper into this aspect 

in future works. 

Moreover, we tried to establish lower time limit values and see if still good solutions would be 

returned. However, the solver does not allow to set such time limits that are smaller than its own 

suggested estimates, according to each problem size, and this why we had to stick to precisely 3 

seconds in all our cases. 

It can be expected that bigger problems will require to increase that time limit. Given that this 

solver seems to find the optimal solutions with some ease, at least in all cases up to 30 reads, 

we have started to explore its performance for larger cases, up to 100 nodes or reads, and see 

and how this affects the time limit required to find a good solution. The preliminary results are 

very promising, and it will be very interesting to see the behavior of the classical approach solver 

for these same cases. 

6.2 Classical approach with Gurobi 

From the results presented in figures 6, 7, 8, 9, and 10, it is possible to verify that the linear 

approach with Gurobi always obtained the optimal solution. Also, in figures 11, 12, 13, 14, and 

15, the influence of the number of nodes on the elapsed time to reach the optimal solution of 

the problem is evaluated. Firstly, it is important to realize that, in the worst-case scenario, a low 

elapsed time, around 0.1 seconds, was required to obtain the optimal solution. Furthermore, it 

is noticed that the time needed grows linearly as the number of nodes increases. This behavior 

may be a natural tendency of the system due to the linear formulation used, or it may be that 

we have not yet evaluated a significant number of nodes to be able to verify an exponential 

growth. Furthermore, it is possible to verify in this case that, as the average overlap increases, 

the time required to obtain the optimal solution to the problem also increases. Thus, the curve 
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that evaluated an average overlap of 80% took longer to obtain the solutions than the curve with 

an average overlap of 20%. This is an unexpected result, because as previously mentioned, it was 

expected to achieve the optimal result faster with higher overlaps than with lower overlaps. And 

the three curves with an average overlap of 50% have a similar time for their respective numbers 

of nodes, as expected. It is worth pointing out that the results obtained with the classical 

approach are not totally comparable to the quantum approaches, as previously mentioned, due 

to the difference between the formulations, one is completely linear (classical), and the others 

are quadratic (QUBO). 

As previously mentioned, to obtain these results, each combination of overlap range and number 

of reads was simulated 1000 times to eliminate possible computational bias. However, when 

checking the standard deviation of the results, it was noticed that the variation between the 

results was minimal for all the amounts of reads evaluated. Thus, it is possible to reduce the 

amount of re-sampling and decrease the total time needed to perform the simulations without 

compromising the result obtained. 

It is recommended that analyses with a larger number of nodes be evaluated to understand how 

the elapsed time scales with an increasing number of reads. However, regarding the number of 

nodes for future studies, the current license that we have available has a limitation, in the linear 

case, of up to 44 nodes, with the probable need to acquire one that allows the analysis of more 

complex and closer to reality cases. 

6.3 Quantum-inspired approach with Chaotic Amplitude Control 

Using Chaotic Amplitude Control combined with random hyperparameter search, we were able 

to obtain optimal solutions to all problems up to 10 nodes, and one optimal solution to a 15-

node problem with an overlap range of 45-55 bases. A feasible solution to the 20-node problem 

with an overlap of 40-60 was found. The solution is almost optimal with only one incorrect edge. 

The 20-node problem with an overlap of 20-80 bases was solved to feasibility, with three edged 

permuted compared to the optimal solution. 

Larger problems could not be solved due to the solver timing out. Given a number of nodes N, 

the QUBO Matrix scales as O(N^4). Barring the exploitation on sparsity, since the simulation time 

of CAC is fixed, this gives a simple lower bound scaling of CAC in a sequential computing model 

as approximately employed by most modern CPUs. In practice, simulating CAC on the CPU scales 

significantly worse. Even without targeting a constant success probability, CAC seems to scale 

approximately as O(exp(N^1/2)), indicating a significant increase in difficulty in simulating the 

Coherent Ising Machine for large problems. Identifying the root cause would require deep 

investigation into the ODE solvers used, a deep understanding of the Julia programming 

language’s compilation process, and a tightly controlled Benchmark environment. 

We do not expect these exact scaling issues to exist on a physical system, although system 

instability might persist. Of particular concern for CAC is the choice of hyperparameters. While 

the current random search within a hypercube does work for small problems, it is not efficient. 

Rigorous analysis of the volume of space occupied by hyperparameter sets leading to almost 

chaotic dynamics, which solve problems efficiently, in relation to problem and size is of great 

interest and would further our knowledge of CIMs considerably. 
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In the future, we would like to submit these problems to NTT’s physical CIM, LASOLV, for 

evaluation. 

 

7. CONCLUSIONS AND NEXT STEPS 

We have described and evaluated the results obtained from the solvers in the quantum and 

classical approaches. This includes a comparison between the performance of the quantum and 

classical solvers. Now we present our main conclusions regarding the advantages and limitations 

of the quantum approach and possible future directions for research in this field are discussed. 

• The D-Wave Hybrid solver and the classical Gurobi Linear solver have shown the best 

performances in obtaining optimal solutions for all the proposed scenarios. 

 

• The purely quantum D-Wave Advantage6.1 QPU solver was only able to obtain optimal 

solutions for the five-node case due to scale limitations. 

 

• The D-Wave Simulated Annealing solver obtains optimal solutions for scenarios with 

small number of nodes, but has difficulties in maintaining optimality as the number of 

nodes increases. 

 

• Overall, the results obtained with the different solvers look promising in many aspects, 

but at the same time highlight the importance of choosing an appropriate solver for the 

problem and the need for further research to improve the scalability of purely quantum 

solvers. 

The scope of this report and the limitations we have encountered have allowed us to think of 

new ideas and possible next steps to optimize the mathematical formulation of the model and 

its implementation for the solvers, to be able to address problems with higher computational 

capacity and to apply our model to real genomic sequencing data. Because of that, we propose 

possible advances and improvements to our model. 

Increase the number of nodes and explore other scenarios. 

We are exploring computationally larger scenarios by increasing the number of nodes. In this 

report, we have generated scenarios with up to 30 nodes, but what happens when we increase 

the number of nodes and run it on the hybrid quantum-classical devices we currently have? This 

can be done by optimizing the design of the model or by increasing the number of qubits. Clearly, 

by increasing the capacity of the hardware, we can achieve more accurate and faster genome 

assembly.  

Graph partitioning using techniques such as Kamedias or METIS. 

To solve larger graphs, we can use graph partitioning techniques that divide the graph into 

smaller, more manageable subgraphs. Using these techniques, we can reduce the computational 

burden and potentially get better results. 
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Alternative formulations of the model that reduce scalability issues. 

To ensure the scalability of the model, we can optimize the algorithm and reduce the number of 

qubits required. This can be achieved by developing more efficient model designs and exploring 

alternative approaches to genome assembly. 

Improved simulated sequences generation. 

By simulating more reads and filtering them, similarly to real sequencing, we can better 

understand the potential of quantum computing for genome assembly. This can be achieved by 

incorporating more realistic error models and testing the assembly results with a larger dataset. 

Handling reads with random errors. 

Finally, we can explore the potential of quantum computing to handle reads with errors. To do 

this, we can develop algorithms capable of detecting or correcting errors in reads, which could 

lead to more accurate genome assembly. 
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